The Correlation between EEG Signals as Measured in Different Positions on Scalp Varying with Distance
نویسندگان
چکیده
Biomedical signals such as electroencephalogram (EEG) are the time varying signal, and different position of electrodes give different time varying signals. There might be a correlation between these signals. It is likely that the correlation is related to the actual position of electrodes. In this paper, we show that correlation is related to the physical distance between electrodes as measured. This finding is independent of participants and brain hemisphere. Our results indicate that the EEG signal is not transmitted via neurons but through white matter in a brain.
منابع مشابه
Monitoring Depth of Anesthesia by Nonlinear Correlation Measures
Background: Monitoring the depth of anesthesia (DOA) takes an important role for anesthetists in order avoiding undesirable reactions such as intraoperative awareness, prolonged recovery and increased risk of postoperative complications.The Central Nervous System (CNS) is the main target of anesthetic drugs, hence EEG signal processing during anesthesia is helpful for monitoring DOA. In order t...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملCan Evolutionary-based Brain Map Be Used as a Complementary Diagnostic Tool with fMRI, CT and PET for Schizophrenic Patients?
Objective: In this research, a new approach termed as “evolutionary-based brain map†is presented as a diagnostic tool to classify schizophrenic and control subjects by distinguishing their electroencephalogram (EEG) features.Methods: Particle swarm optimization (PSO) is employed to find discriminative frequency bands from different EEG channels. By deploying the energy of those selected fr...
متن کاملA Unique Approach of Noise Elimination from Electroencephalography Signals between Normal and Meditation State
In this paper, unique approach is presented for the electroencephalography (EEG) signals analysis. This is based on Eigen values distribution of a matrix which is called as scaled Hankel matrix. This gives us a way to find out the number of Eigen values essential for noise reduction and extraction of signal in singular spectrum analysis. This paper gives us an approach to classify the EEG signa...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کامل